Artificial Intelligence


Mapillary Based Plant Distributions of Ethnobotanical Afforestation.

Authors: Bheemaiah, Anil Kumar

Abstract: Mapillary is an open-source code base for the use of GPU based Deep Learning for Semantic Segmentation of wild images. We propose the creation of an autonomous drone for the automated capture of scientific images of medicinal and edible plants to create geotagged maps of plants on with additional tags on plant sizes, species, and edible and medicinal value. This information is used in the planning of sponsored five or more level afforestation as social and academic forestry for edible and medicinal value. The same research is also useful in planning afforestation on Mars. Keywords: Miyawakis, Mapillary, Seamless Segmentation, FPN, ResNet50, Redtail, Edible and Medicinal Plants, Geotag

Comments: 6 Pages.

Download: PDF

Submission history

[v1] 2019-08-21 11:24:58

Unique-IP document downloads: 5 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus