Biochemistry

   

Physicochemical and Thermal Characterization of Biofield Energy Treated Polylactic-co-glycolic acid (PLGA)

Authors: Alice Branton, Mahendra Kumar Trivedi, Dahryn Trivedi, Gopal Nayak, Snehasis Jana

Polylactic-co-glycolic acid (PLGA) is a biodegradable copolymer. It has many applications in the pharmaceuticals and biomedical industries, but its degradation and stability is a major concern. The objective of this study was to evaluate the influence of the Trivedi Effect® on the physicochemical and thermal properties of PLGA using modern analytical techniques. The PLGA sample was divided into control and Biofield Energy Treated parts. The control sample did not obtain the Biofield Energy Treatment, whereas the treated PLGA was received the Trivedi Effect®-Consciousness Energy Healing Treatment remotely by a renowned Biofield Energy Healer, Alice Branton. The particle size values of the treated PLGA were increased by 8.97%(d10), 8.79%(d50), 4.72%(d90), and 6.61%{D(4,3)}; thus, the surface area of treated PLGA was significantly decreased by 6.84% compared with the control sample. The latent heat of evaporation and fusion of the treated PLGA were significantly increased by 29.60% and 230.93%, respectively compared with the control sample. The residue amount was significantly increased by 21.99% in the treated PLGA compared to the control sample. The maximum thermal degradation temperature of the treated PLGA was increased by 2.30% compared with the control sample. It was concluded that the Trivedi Effect®-Consciousness Energy Healing Treatment might have generated a new form of PLGA which may show better powder flowability, thermal stability, and minimise the hydrolysis of the ester linkages of PLGA.This improved quality of PLGA would be a better choice for the pharmaceutical formulations (i.e., the drug like simvastatin, amoxicillin, and minocycline loaded PLGA nanoparticles) and manufacturing of biomedical devices, i.e., grafts, sutures, implants, surgical sealant films, prosthetic devices, etc., in the industry using it as a raw material.

Comments: 6 Pages.

Download: PDF

Submission history

[v1] 2019-08-17 01:28:47

Unique-IP document downloads: 2 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus