Learning a Function Over Distributions

Authors: Glenn Healey, Shiyuan Zhao

We present a method for learning a function over distributions. The method is based on generalizing nonparametric kernel regression by using the earth mover's distance as a metric for distribution space. The technique is applied to the problem of learning the dependence of pitcher performance in baseball on multidimensional pitch distributions that are controlled by the pitcher. The distributions are derived from sensor measurements that capture the physical properties of each pitch. Finding this dependence allows the recovery of optimal pitch frequencies for individual pitchers. This application is amenable to the use of signatures to represent the distributions and a whitening step is employed to account for the correlations and variances of the pitch variables. Cross validation is used to optimize the kernel smoothing parameter. A set of experiments demonstrates that the method accurately predicts changes in pitcher performance in response to changes in pitch distribution.

Comments: 16 Pages.

Download: PDF

Submission history

[v1] 2019-08-15 11:43:49

Unique-IP document downloads: 56 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus