Classical Physics


Wave Propagation Equations in Spaces with Different Metrics

Authors: Valery Timin

A separate widespread type of motion in any space is the wave motion characterized by some amplitude A, oscillation frequency f of the wave parameter and velocity c = cx of the wave motion along the direction of the x axis. In this paper, the equations of wave motion in spaces with different metrics are considered: in Galilean space, pre-relativistic space of classical mechanics, Minkowski space. Aberration, relativistic and Doppler effects are calculated. Various cases of mutual motion of the source and the receiver and corresponding transformations of coordinates are considered.
Отдельным широко распространенным типом движения в любом пространстве является волновое движение, характеризующееся некоторой амплитудой A, частотой колебаний  параметра волны и скоростью c = cx движения волны вдоль направления оси x. В данной работе рассмотрены уравнения движения волны в пространствах с различной метрикой: в галилеевом пространстве, дорелятивистском пространстве классической механики, пространстве Минковского. Рассчитаны аберрация, релятивистский и Доплера эффекты. Рассмотрены различные случаи взаимного движения источника и приемника и соответствующие им преобразования координат.

Comments: language: Russian, number of pages: 17,, Creative Commons Attribution 3.0 License

Download: PDF

Submission history

[v1] 2019-08-05 16:33:40

Unique-IP document downloads: 7 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus