## An Exact Formula for the Prime Counting Function

**Authors:** Jose R. Sousa

This article discusses a few main topics in Number Theory, such as the M\"{o}bius function and its generalization, leading up to the derivation of a neat power series for the prime counting function, $\pi(x)$. Among its main findings, we can cite the inversion theorem for Dirichlet series (given $F_a(s)$, we can tell what its associated function, $a(n)$, is), which enabled the creation of a formula for $\pi(x)$ in the first place, and the realization that sums of divisors and the M\"{o}bius function are particular cases of a more general concept. Another conclusion we draw is that it's unnecessary to resort to the zeros of the analytic continuation of the zeta function to obtain $\pi(x)$.

**Comments:** 16 Pages. I think this finding may have interesting applications in the study of the Riemann Hypothesis

**Download:** **PDF**

### Submission history

[v1] 2019-07-29 22:01:51

**Unique-IP document downloads:** 37 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary.
In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution.
Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.*

*
*