Artificial Intelligence


Hybrid ARIMA-HyFIS Model for Forecasting Univariate Time Series

Authors: B. Ravi Sankar, S. Alamelu Mangai, K. Alagarsamy, Ph D, Kasinathan Subramanian

In this paper, a novel hybrid model for fitting and forecasting a univariate time series is developed based on ARIMA and HyFIS models. The linear part is fitted using ARIMA model whereas the non-linear residual is fitted using HyFIS model. Clustering technique is used to determine the number of inputs and the membership functions of the HyFIS model. The hybrid model is applied to the wind speed data. The result is analyzed and compared on the basis of standalone ARIMA, standalone HyFIS and for the hybrid ARIMA-HyFIS model.

Comments: 7 Pages.

Download: PDF

Submission history

[v1] 2019-07-26 00:37:42

Unique-IP document downloads: 7 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus