Expansions of Maximum and Minimum from Generalized Maxwell Distribution

Authors: Jianwen Huang, Xinling Liu, Jianjun Wang

Generalized Maxwell distribution is an extension of the classic Maxwell distribution. In this paper, we concentrate on the joint distributional asymptotics of normalized maxima and minima. Under optimal normalizing constants, asymptotic expansions of joint distribution and density for normalized partial maxima and minima are established. These expansions are used to educe speeds of convergence of joint distribution and density of normalized maxima and minima tending to its corresponding ultimate limits. Numerical analysis are provided to support our results.

Comments: 13 Pages.

Download: PDF

Submission history

[v1] 2019-07-04 06:22:03

Unique-IP document downloads: 18 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus