Quantum Physics


A Physical Explanation for Particle Spin

Authors: Dirk Pons, Arion Pons, Aiden Pons

CONTEXT - The spin of a particle is physically manifest in multiple phenomena. For quantum mechanics (QM), spin is an intrinsic property of a point particle, but an ontological explanation is lacking. In this paper we propose a physical explanation for spin at the sub-particle level, using a non-local hidden-variable (NLHV) theory. APPROACH - Mechanisms for spin were inferred from the Cordus NLHV theory, specifically from theorised structures at the sub-particle level. RESULTS – Physical geometry of the particle can explain spin phenomena: polarisation, Pauli exclusion principle (Einstein-Podolsky-Rosen paradox), excited states, and selective spin of neutrino species. A quantitative derivation is provided for electron spin g-factor g = 2, and a qualitative explanation for the anomalous component. IMPLICATIONS - NLHV theory offers a candidate route to new physics at the sub-particle level. This also implies philosophically that physical realism may apply to physics at the deeper level below QM. ORIGINALITY – The electron g-factor has been derived using sub-particle structures in NLHV theory, without using quantum theory. This is significant as the g-factor is otherwise considered uniquely predicted by QM. Explanations are provided for spin phenomena in terms of physical sub-structures to the particle.

Comments: 25 Pages. Citation: Pons, D.J., Pons, A.D., and Pons, A.J., A physical explanation for particle spin Journal of Modern Physics, 2019. 10(7): p. 835-860 DOI: https://doi.org/10.4236/jmp.2019.107056

Download: PDF

Submission history

[v1] 2019-05-05 21:16:49
[v2] 2019-06-25 16:13:55

Unique-IP document downloads: 23 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus