Quantum Gravity and String Theory


Cosmological Considerations in the Quantum Theory of Relativity: An Observationally Verifiable Quantum Theory of Gravity that Defines Black Holes, Explains Dark Matter, Predicts Dark Energy, and Establishes the Big Bang

Authors: Andrew Cox

If space is quantized on a compactified fourth spatial dimension as outlined in Kaluza-Klein theory -- with the extreme curvature of the fourth spatial dimension causing the 'effect' of gravity -- but we experience three-dimensional (inverse-square) gravity, then the fourth spatial dimension must operate as one stand-alone spatial dimension. In one spatial dimension, quantum gravity is the same (effectively 100%) whether two objects are together or apart. This deductive quantum theory of relativity can then be projected to: (1) define black holes as wormholes into the fourth spatial dimension; (2) explain dark matter as photons which traveled through black holes and into the fourth spatial dimension; (3) predict dark energy to be the warping of the fourth spatial dimension in the presence of dark matter photons; and (4) establish the big bang as the beginning of three flat spatial dimensions in a cyclic universe.

Comments: 14 Pages.

Download: PDF

Submission history

[v1] 2019-03-31 20:30:12

Unique-IP document downloads: 24 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus