Denial of Consistency for the Lobachevskii Non Euclidean Geometry

Authors: Colin James III

We prove two parallel lines are tautologous in Euclidean geometry. We next prove that non Euclidean geometry of Lobachevskii is not tautologous and hence not consistent. What follows is that Riemann geometry is the same, and non Euclidean geometry is a segment of Euclidean geometry, not the other way around. Therefore non Euclidean geometries are a non tautologous fragment of the universal logic VŁ4.

Comments: 2 Pages.

Download: PDF

Submission history

[v1] 2019-03-17 21:21:17
[v2] 2019-03-18 18:09:25

Unique-IP document downloads: 26 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus