Artificial Intelligence


Resolving Limits of Organic Systems in Large Scale Environments: Evaluate Benefits of Holonic Systems Over Classical Approaches

Authors: Claudio Schmidt

With the rapidly increasing number of devices and application components interacting with each other within larger complex systems, classical system hierarchies increasingly hit their limit when it comes to highly scalable and possibly fluctual organic systems. The holonic approach for self-* systems states to solve some of these problems. In this paper, limits of different state-of-the-art technologies and possible solutions to those will be identified and ranked for scalability, privacy, reliability and performance under fluctuating conditions. Subsequently, the idea and structure of holonic systems will be outlined, and how to utilize the previously described solutions combined in a holonic environment to resolve those limits. Furthermore, they will be classified in the context of current multi-agent-systems (MAS). The focus of this work is located in the area of smart energy grids and similar structures, however an outlook sketches a few further application scenarios for holonic structures.

Comments: 5 Pages.

Download: PDF

Submission history

[v1] 2019-03-12 15:13:02

Unique-IP document downloads: 8 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus