Artificial Intelligence


Advancements of Deep Q-Networks

Authors: Bastian Birkeneder

Deep Q-Networks first introduced a combination of Reinforcement Learning and Deep Neural Networks at a large scale. These Networks are capable of learning their interactions within an environment in a self-sufficient manor for a wide range of applications. Over the following years, several extensions and improvements have been developed for Deep Q-Networks. In the following paper, we present the most notable developments for Deep Q-Networks, since the initial proposed algorithm in 2013.

Comments: 5 Pages.

Download: PDF

Submission history

[v1] 2019-03-10 19:47:08

Unique-IP document downloads: 20 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus