Artificial Intelligence

   

A Survey on Classification of Concept Drift with Stream Data

Authors: Shweta Vinayak Kadam

Usually concept drift occurs in many applications of machine learning. Detecting a concept drift is the main challenge in a data stream because of the high speed and their large size sets which are not able to fit in main memory. Here we take a small look at types of changes in concept drift. This paper discusses about methods for detecting concept drift and focuses on the problems with existing approaches by adding STAGGER, FLORA family, Decision tree methods, meta-learning methods and CD algorithms. Furthermore, classifier ensembles for change detection are discussed.

Comments: 7 Pages.

Download: PDF

Submission history

[v1] 2019-03-09 05:32:36

Unique-IP document downloads: 16 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus