Artificial Intelligence


Diversity of Ensembles for Data Stream Classification

Authors: Mohamed Souhayel Abassi

When constructing a classifier ensemble, diversity among the base classifiers is one of the important characteristics. Several studies have been made in the context of standard static data, in particular when analyzing the relationship between a high ensemble predictive performance and the diversity of its components. Besides, ensembles of learning machines have been performed to learn in the presence of concept drift and adapt to it. However,diversity measureshave not received much research interest for evolving data streams. Only a few researchers directly consider promoting diversity while constructing an ensemble or rebuilding them in the moment of detecting drifts. In this paper, we present a theoretical analysis of different diversity measures and relate them to the success of ensemble learning algorithms for streaming data. The analysis provides a deeper understanding of the concept of diversity and its impact on online ensemble Learning in the presence of concept drift. More precisely, we are interested in answering the following research question; Which commonly used diversity measures are used in the context of static-data ensembles and how far are they applicable in the context of streaming data ensembles?

Comments: 9 Pages.

Download: PDF

Submission history

[v1] 2019-02-22 06:21:37

Unique-IP document downloads: 12 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus