Thermodynamics and Energy


Energy is not Conserved Masses Like to Act Like Waves and Waves Are Masses

Authors: Adham Ahmed Mohamed Ahmed

In this paper we will talk about how masses actually spend their energies in space and how masses actually lose their mass energy masses are relative and are not conserved they lose their mass by radiation spinning and gravity now when we look at a mass we find that it has the same mass at all time which but in fact its because its losing its mass at a rate of c or the speed of light constant and becomes c times smaller after c seconds and all the mass lost is equal to mc or the number of mass multiplied by the c constant or mc^2/c=mc and what is left is the new mc rather than E=mc^2 energy and then we can talk about how mass likes to act like waves when they gain external energy from other masses as when you hit pond water with a ball and watch the ripples the wave is just energy that cant escape from the mass medium and then when its spread across a larger medium and the oscillations hights(peaks and troughs) are still the same unless and the wave is still there and is not lost unless of course if the wave hits air and then the wave disappears after some time but if there are no air and also if there is zero air in a water container and a wave is applied the water vibrates forever unless the energy is absorbed by the masses and are part of the masses and then we talk about waves and why waves are masses its because waves are not electromagnetic waves they are masses that have very much mass absorbed from the star it came from and then photon mass absorbs the energy inside of the mass and then the photon starts losing energy at c constant rate but since the photon has small mass to energy acquired ratio it moves at high speeds for long time

Comments: 1 Page. ty

Download: PDF

Submission history

[v1] 2019-02-06 09:25:36

Unique-IP document downloads: 11 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus