Number Theory

   

Prove Grimm’s Conjecture via Stepwise Forming Consecutive Composite Number’s Points on the Original Number Axis

Authors: Zhang Tianshu

If regard positive integers which have a common prime factor as a kind, then the positive half line of the number axis consists of infinite many recurring segments which have same permutations of c kinds of integer’s points, where c≥1. In this article, the author shall prove Grimm’s conjecture by the method that changes orderly symbols of each kind of composite number’s points at the original number axis, so as to form consecutive composite number’s points within limits that proven Bertrand's postulate restricts.

Comments: 14 Pages.

Download: PDF

Submission history

[v1] 2018-12-16 09:20:54

Unique-IP document downloads: 4 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus