Number Theory


Fermat’s Last Theorem First and Second Cases

Authors: Victor Sorokine

he essence of the proof of the FLT: The first case (ABC is not a multiple of n): In one of the equivalent Fermat equations, the 3rd digit of the sum of the powers of the last digits of the bases greater than 1, which cannot be zeroed using the second digits with the sum of the latter equal to 0 or n-1. +++ The second case (A or B or C is a multiple of n): (k+2)-th digit in the number D=(A+B)^n-(C-B)^n-(C-A)^n, where the number A+B-C ends by k zeros, is not zero, but after adding to the number D zero as 0=A^n+B^n-C^n (k+2)-th digit is zero.

Comments: 2 Pages.

Download: PDF

Submission history

[v1] 2018-11-27 10:05:16

Unique-IP document downloads: 65 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus