**Authors:** Felix M. Lev

Standard quantum theory is based on classical mathematics involving such notions as infinitely small/large and continuity. Those notions were proposed by Newton and Leibniz more than 300 years ago when people believed that every object can be divided by an arbitrarily large number of arbitrarily small parts. However, now it is obvious that when we reach the level of atoms and elementary particles then standard division loses its meaning and in nature there are no infinitely small objects and no continuity. In our previous publications we proposed a version of finite quantum theory (FQT) based on a finite ring or field with characteristic $p$. In the present paper we first define the notion when theory A is more general than theory B and theory B is a special degenerate case of theory A. Then we prove that standard quantum theory is a special degenerate case of FQT in the formal limit $p\to\infty$. Since quantum theory is the most general physics theory, this implies that classical mathematics itself is a special degenerate case of finite mathematics in the formal limit when the characteristic of the ring or field in the latter goes to infinity. In general, introducing infinity automatically implies transition to a degenerate theory because in that case all operations modulo a number are lost. So, {\it even from the pure mathematical point of view}, the very notion of infinity cannot be fundamental, and theories involving infinities can be only approximations to more general theories. Motivation and implications are discussed.

**Comments:** 9 Pages. Title and abstract revisited

**Download:** **PDF**

[v1] 2018-11-03 23:46:55

[v2] 2018-11-15 23:29:07

[v3] 2018-11-23 18:29:06

[v4] 2018-12-13 23:09:36

[v5] 2019-01-12 12:43:10

[v6] 2019-03-23 23:14:31

**Unique-IP document downloads:** 90 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful. *