Artificial Intelligence

   

Measuring Fuzziness of Z-numbers and Its Application in Sensor Data Fusion

Authors: Yangxue Li; Yong Deng

Real-world information is often characterized by fuzziness due to the uncertainty. Z- numbers is an ordered pair of fuzzy numbers and is widely used as a flexible and efficient model to deal with the fuzziness information. This paper extends the fuzziness measure to continuous fuzzy number. Then, a new fuzziness measure of discrete Z-numbers and continuous Z-numbers is proposed: simple addition of fuzziness measures of two fuzzy numbers of a Z-number. It can be used to obtain a fused Z-number with the best in- formation quality in sensor fusion applications based on Z-numbers. Some numerical examples and the application in sensor fusion are illustrated to show the efficiency of the proposed fuzziness measure of Z-numbers.

Comments: 22 Pages.

Download: PDF

Submission history

[v1] 2018-07-14 03:06:32

Unique-IP document downloads: 22 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus