Artificial Intelligence


Implementation of Regional-CNN and SSD Machine Learning Object Detection Architectures for the Real Time Analysis of Blood Borne Pathogens in Dark Field Microscopy

Authors: Daniel Fleury, Angelica Fleury

The emerging use of visualization techniques in pathology and microbiology has been accelerated by machine learning (ML) approaches towards image preprocessing, classification, and feature extraction in an increasingly complex series of datasets. Modern Convolutional Neural Network (CNN) architectures have developed into an umbrella of vast image reinforcement and recognition methods, including a combined classification-localization of single/multi-object featured images. As a subtype neural network, CNN creates a rapid order of complexity by initially detecting borderlines, edges, and colours in images for dataset construction, eventually capable in mapping intricate objects and conformities. This paper investigates the disparities between Tensorflow object detection APIs, exclusively, Single Shot Detector (SSD) Mobilenet V1 and the Faster RCNN Inception V2 model, to sample computational drawbacks in accuracy-precision vs. real time visualization capabilities. The situation of rapid ML medical image analysis is theoretically framed in regions with limited access to pathology and disease prevention departments (e.g. 3rd world and impoverished countries). Dark field microscopy datasets of an initial 62 XML-JPG annotated training files were processed under Malaria and Syphilis classes. Model trainings were halted as soon as loss values were regularized and converged.

Comments: 10 Pages.

Download: PDF

Submission history

[v1] 2018-07-05 18:09:36

Unique-IP document downloads: 100 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus