Astrophysics

   

Sensitive Search for Dark Matter

Authors: George Rajna

Thanks to low-noise superconducting quantum amplifiers invented at the University of California, Berkeley, physicists are now embarking on the most sensitive search yet for axions, one of today's top candidates for dark matter. [31] The Axion Dark Matter Experiment (ADMX) at the University of Washington in Seattle has finally reached the sensitivity needed to detect axions if they make up dark matter, physicists report today in Physical Review Letters. [30] Now our new study – which hints that extremely light particles called neutrinos are likely to make up some of the dark matter – challenges our current understanding of its composition. [29] A new particle detector design proposed at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) could greatly broaden the search for dark matter—which makes up 85 percent of the total mass of the universe yet we don't know what it's made of—into an unexplored realm. [28] University of Houston scientists are helping to develop a technology that could hold the key to unraveling one of the great mysteries of science: what constitutes dark matter? [27] This week, scientists from around the world who gathered at the University of California, Los Angeles, at the Dark Matter 2018 Symposium learned of new results in the search for evidence of the elusive material in Weakly Interacting Massive Particles (WIMPs) by the DarkSide-50 detector. [26] If they exist, axions, among the candidates for dark matter particles, could interact with the matter comprising the universe, but at a much weaker extent than previously theorized. New, rigorous constraints on the properties of axions have been proposed by an international team of scientists. [25] The intensive, worldwide search for dark matter, the missing mass in the universe, has so far failed to find an abundance of dark, massive stars or scads of strange new weakly interacting particles, but a new candidate is slowly gaining followers and observational support. [24]

Comments: 53 Pages.

Download: PDF

Submission history

[v1] 2018-04-10 08:47:05

Unique-IP document downloads: 5 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus