Set Theory and Logic


Prenex Normal Form with Prefix and Matrix Refuted as not Bivalent © Copyright 2018 by Colin James III All Rights Reserved.

Authors: Colin James III

We evaluate prenex normal form of quantifier presentation on rules for the connectives of conjunction, disjunction, implication, and for negation. The format is not tautologous, not bivalent, and hence refuted. What follows is that many theorems produced with prenex for computer science, mathematics, and physics are now suspicious. A notable example is the satisfiability algorithms produced by Martin Davis and Hilary Putnam which are now mistaken.

Comments: 3 Pages. © Copyright 2018 by Colin James III All rights reserved.

Download: PDF

Submission history

[v1] 2018-02-15 08:26:17

Unique-IP document downloads: 12 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus