Astrophysics

   

Solving the Dark Energy Mystery

Authors: George Rajna

Forty-five years ago this month, a telescope tucked inside a 14-story, 500-ton dome atop a mile-high peak in Arizona took in the night sky for the first time and recorded its observations in glass photographic plates. [23] The PRISMA researchers propose a scenario in which two dark matter particles collide, resulting in their mutual annihilation. [21] A new model introduces a charge for dark matter, which would allow it to radiate energy and form compact objects such as dark stars or dark galaxies. [20] Just how quickly is the dark matter near Earth zipping around? The speed of dark matter has far-reaching consequences for modern astrophysical research, but this fundamental property has eluded researchers for years. [19] A NASA rocket experiment could use the Doppler effect to look for signs of dark matter in mysterious X-ray emissions from space. [18] CfA astronomers Annalisa Pillepich and Lars Hernquist and their colleagues compared gravitationally distorted Hubble images of the galaxy cluster Abell 2744 and two other clusters with the results of computer simulations of dark matter haloes. [17] In a paper published July 20 in the journal Physical Review Letters, an international team of cosmologists uses data from the intergalactic medium— the vast, largely empty space between galaxies—to narrow down what dark matter could be. [16] But a new hypothesis might have gotten us closer to figuring out its identity, because physicists now suspect that dark matter has been changing forms this whole time - from ghostly particles in the Universe's biggest structures, to a strange, superfluid state at smaller scales. And we might soon have the tools to confirm it. [15] Superfluids may exist inside neutron stars, and some researchers have speculated that space-time itself may be a superfluid. So why shouldn’t dark matter have a superfluid phase, too? [14] "The best result on dark matter so far—and we just got started." This is how scientists behind XENON1T, now the most sensitive dark matter experiment world-wide, commented on their first result from a short 30-day run presented today to the scientific community. [13]

Comments: 32 Pages.

Download: PDF

Submission history

[v1] 2018-02-13 05:17:20

Unique-IP document downloads: 17 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus