## Palindromes Obtained Concatenating the Prime Factors of a Poulet Number and Adding to the Number Obtained Its Reversal

**Authors:** Marius Coman

In this paper I make the following two conjectures: (I) There exist an infinity of Poulet numbers P such that D + R(D), where R(D) is the number obtained reversing the digits of D which is the number obtained concatenating the prime factors of P, is a palindromic number (example: such a Poulet number is P = 12801; the prime factors of 12801 are 3, 17 and 251, then D = 317251 and D + R(D) = 317251 + 152713 = 469964, a palindromic number); (II) There is no a number obtained concatenating the prime factors of a Poulet number to be a Lychrel number.

**Comments:** 2 Pages.

**Download:** **PDF**

### Submission history

[v1] 2018-01-13 08:02:40

**Unique-IP document downloads:** 10 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary.
In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution.
Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.*

*
*