## The Virial Theorem and the Kinetic Energy of Particles of a Macroscopic System in the General Field Concept

**Authors:** Sergey G. Fedosin

The virial theorem is considered for a system of randomly moving particles that are tightly bound to each other by the gravitational and electromagnetic fields, acceleration field and pressure field. The kinetic energy of the particles of this system is estimated by three methods, and the ratio of the kinetic energy to the absolute value of the energy of forces, binding the particles, is determined, which is approximately equal to 0.6. For simple systems in classical mechanics, this ratio equals 0.5. The difference between these ratios arises by the consideration of the pressure field and acceleration field inside the bodies, which make additional contribution to the acceleration of the particles. It is found that the total time derivative of the system’s virial is not equal to zero, as is assumed in classical mechanics for systems with potential fields. This is due to the fact that although the partial time derivative of the virial for stationary systems tends to zero, but in real bodies the virial also depends on the coordinates and the convective derivative of the virial, as part of the total time derivative inside the body, is not equal to zero. It is shown that the convective derivative is also necessary for correct description of the equations of motion of particles.

**Comments:** 19 Pages. Continuum Mechanics and Thermodynamics, Vol. 29, Issue 2, pp. 361-371 (2016). https://dx.doi.org/10.1007/s00161-016-0536-8.

**Download:** **PDF**

### Submission history

[v1] 2017-10-26 07:28:35

**Unique-IP document downloads:** 21 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary.
In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution.
Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.*

*
*