High Energy Particle Physics


Self-Consistent Generation of Quantum Fermions in Theories of Gravity

Authors: Risto Raitio

I search for concepts that would allow self-consistent generation of dressed fermions in theories of gravitation. Self-consistency means here having the Compton wave lengths of the same order of magnitude for all particles and the four interactions. To build the quarks and leptons of the standard model preons of spin 1/2 and charge 1/3 or 0 have been introduced by the author. Classification of preons, quarks and leptons is provided by the two lowest representations of the quantum group SLq(2). Three extensions of general relativity are considered for self-consistency: (a) propagating and (b) non-propagating torsion theories in Einstein-Cartan spacetime and (c) a Kerr-Newman metric based theory in general relativity (GR). For self-consistency, the case (a) is not excluded, (b) is possible and (c) has been shown to provide it, reinforcing the preon model, too. Therefore I propose that semiclassical GR with its quantum extension (c) and the preon model will be considered a basis for unification of physics. The possibility remains that there are 'true' quantum gravitational phenomena at or near the Planck scale.

Comments: 25 Pages.

Download: PDF

Submission history

[v1] 2017-10-20 07:42:54

Unique-IP document downloads: 40 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus