Electrospinning of Guar Gum/Corn Starch Blends

Authors: Weiqiao Yang, Ana MM Sousa, Xihong Li, Peggy M Tomasula, LinShu Liu

In this study, electrospun nanofibers were prepared for the first time, from aqueous blends of guar gum (GG) and corn starch with amylose contents of 27.8% (CS28) and 50% (CS50). The fiber morphology and fiber diameter sizes (FDS) were correlated with solution rheology. The spinning solutions were prepared with 3 wt% total concentration and mass ratios ranging from 4:1 to 1:4 GG/CS. The GG alone (3 wt%) was highly viscous and predominantly elastic (G’>G’’) over the range of tested frequencies. Both CS were effective rheological modifiers that facilitated the electrospinning process. Partial substitution of GG by CS decreased solution viscosity and moved the elastic plateau (G’=G’’) to higher frequencies resulting in improved fiber morphology and defectfree nanofibers with uniform FDS at an optimal GG/CS ratio of 2:1 for CS28 and of 1:1 for CS50. The sonication of CS50 prior to blending with GG was important to eliminate nanofiber defects. GG and CS are costattractive options to produce 100% food-grade electrospun nanofibers with potential to encapsulate active food ingredients and be used to develop functional foods and other active food systems.

Comments: 7 Pages.

Download: PDF

Submission history

[v1] 2017-09-23 05:05:32

Unique-IP document downloads: 108 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus