Artificial Intelligence


Design & Implementation of Fuzzy Parallel Distributed Compensation Controller for Magnetic Levitation System

Authors: Milad Gholami, Zohreh Alzahra Sanai Dashti, Masoud Hajimani

This study applies technique parallel distributed compensation (PDC) for position control of a Magnetic levitation system. PDC method is based on nonlinear Takagi-Sugeno (T-S) fuzzy model. It is shown that this technique can be successfully used to stabilize any chosen operating point of the system. All derived results are validated by experimental and computer simulation of a nonlinear mathematical model of the system. The controllers which introduced have big range for control the system.

Comments: 9 Pages. IOSR Journal of Electrical and Electronics Engineering (IOSR - JEEE) e - ISSN : 2278 - 1676,p - ISSN: 2320 - 3331, Volume 12, Issue 4 Ver. I I (Jul. – Aug. 2017), PP 20 - 28

Download: PDF

Submission history

[v1] 2017-09-11 20:56:32

Unique-IP document downloads: 97 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus