Coronal Heating Problem

Authors: George Rajna

It is known that the sun's corona—the outermost layer of the sun's atmosphere—is roughly 100 times hotter than its photosphere—the sun's visible layer. [16] A team led by scientists from the University of California, Los Angeles and the Department of Energy's SLAC National Accelerator Laboratory has reached another milestone in developing a promising technology for accelerating particles to high energies in short distances: They created a tiny tube of hot, ionized gas, or plasma, in which the particles remain tightly focused as they fly through it. [15] Using the Continuous Electron Beam Accelerator Facility (CEBAF) at the Department of Energy's Jefferson Lab, a team of researchers has, for the first time, demonstrated a new technique for producing polarized positrons. The method could enable new research in advanced materials and offers a new avenue for producing polarized positron beams for a proposed International Linear Collider and an envisioned Electron-Ion Collider. [14] A study led by researchers from the has demonstrated a new, efficient way to accelerate positrons, the antimatter opposites of electrons. The method may help boost the energy and shrink the size of future linear particle colliders-powerful accelerators that could be used to unravel the properties of nature's fundamental building blocks. [13] More realistic versions of lattice QCD may lead to a better understanding of how quarks formed hadrons in the early Universe. The resolution of the Proton Radius Puzzle is the diffraction pattern, giving another wavelength in case of muonic hydrogen oscillation for the proton than it is in case of normal hydrogen because of the different mass rate. Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.

Comments: 20 Pages.

Download: PDF

Submission history

[v1] 2017-08-09 14:30:07

Unique-IP document downloads: 8 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus