High Energy Particle Physics

   

Quantum-Interference Phenomena in the Femtometer Scale of Baryons. Inclusion of all Baryon Octet and Decuplet Particles

Authors: Osvaldo F. Schilling

Evidence for quantum interference due to internal currents is presented for all baryons of the octet and decuplet, through the joint analysis of their rest energy and magnetic moments data. This work supplements the paper vixra: 1706.0040, and corrects the approximate equation used to fit data in a Figure in that paper( and in vixra:1706.0287). The fully correct expression, plotted here in a new Figure, clearly displays instability and the tendency of the number of flux quanta n to “reach for” integer values whenever the magnetic moment of a particle ( in nuclear magneton units) becomes an integer number. The overall conclusion of this set of papers in vixra is that mass is essentially determined by kinetic( and magnetic) energies associated with angular momentum. The fine details, however, depend upon the magnetic moments ( consistent with SU(3) symmetry), their self-magnetic fields, and the resulting currents whose intereference will determine the correct energies that consitute the so-called rest masses.

Comments: 3 pages, 1 figure

Download: PDF

Submission history

[v1] 2017-08-06 09:21:13

Unique-IP document downloads: 18 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus