## An Upper Bound for Error Term of Mertens' Formula

**Authors:** Choe Ryong Gil

In this paper, it is obtained a new estimate for the error term E(t) of the Mertens' formula sum_{p≤t}{p^{-1}}=loglogt+b+E(t), where t>1 is a real number, p is the prime number and b is the well-known Mertens' constant. We , first, provide an upper bound, not a lower bound, of E(p) for any prime number p≥3 and, next, give one in the form as E(t)<logt/√t for any real number t≥3. This is an essential improvement of already known results. Such estimate is very effective in the study of the distribution of the prime numbers.

**Comments:** 27 pages, 6 tables

**Download:** **PDF**

### Submission history

[v1] 2017-06-21 02:30:07

**Unique-IP document downloads:** 14 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary.
In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution.
Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.*

*
*