Number Theory

   

On the Quantum Differentiation of Smooth Real-Valued Functions

Authors: Kolosov Petro

Calculating the value of $C^{k\in\{1,\infty\}}$ class of smoothness real-valued function's derivative in point of $\mathbb{R}^+$ in radius of convergence of its Taylor polynomial (or series), applying an analog of Newton's binomial theorem and $q$-difference operator. $(P,q)$-power difference introduced in section 5. Additionally, by means of Newton's interpolation formula, the discrete analog of Taylor series, interpolation using $q$-difference and $p,q$-power difference is shown. Keywords: derivative, differential calculus, differentiation, Taylor's theorem, Taylor's formula, Taylor's series, Taylor's polynomial, power function, Binomial theorem, smooth function, real calculus, Newton's interpolation formula, finite difference, q-derivative, Jackson derivative, q-calculus, quantum calculus, (p,q)-derivative, (p,q)-Taylor formula, mathematics, math, maths, science, arxiv, preprint

Comments: 12 pages, 6 figures, arXiv:1705.02516

Download: PDF

Submission history

[v1] 2017-06-07 14:51:48

Unique-IP document downloads: 22 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus