Number Theory


Primes Obtained Concatenating to the Left a Prime Having an Odd Prime Digit Sum S with a Divisor of S-1

Authors: Marius Coman

In a previous paper, “Primes obtained concatenating a Poulet number P with (s - 1)/n where s digits sum of P and n is 2, 3 or 6”, I noticed that in almost all the cases that I considered if a prime was obtained through this concatenation than the digits sum of P was a prime. That gave me the idea for this paper where I observe that for many primes p having an odd prime digit sum s there exist a prime obtained concatenating p to the left with a divisor of s – 1 (including 1 and s – 1).

Comments: 2 Pages.

Download: PDF

Submission history

[v1] 2017-05-07 08:51:48

Unique-IP document downloads: 6 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus