## The Simple Infinite Set

**Authors:** Ken Seton

Many have suggested that the infinite set has a fundamental problem. The usual complaint rails against the actually infinite which (to critics of various finitist persuasions) unjustifiably goes beyond the finite. Here we observe the exact opposite. The problem of the infinite set defined to have an identity (content) that is specified and restricted to be forever finite .
Set theory is taken at its word. The existence of the infinite set and the representation of irrational reals as infinite sets of terms is accepted. In this context, it is shown that the standard definition of the infinite countable set is inconsistent with the existence of its own classic convergents of construction. If the set is infinite then it must be quite unlike that which set theory asserts it to be.
Set theory found itself into some trouble over a century ago trusting an unrestricted anthropic comprehension. But serious doubt is cast on the validity of infinite sets which have been defined by a comprehension which overly-restricts their content.

**Comments:** 8 Pages. Enjoy

**Download:** **PDF**

### Submission history

[v1] 2017-04-10 01:13:52

**Unique-IP document downloads:** 19 times

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.*

*
*