Number Theory

   

High Degree Diophantine Equation C^q=a^p+b^p

Authors: Wu ShengPing

The main idea of this article is simply calculating integer functions in module. The algebraic in the integer modules is studied in completely new style. By a careful construction the result that two finite numbers is with unequal logarithms in a corresponding module is proven, which result is applied to solving a kind of diophantine equation: $c^q=a^p+b^p$.

Comments: 4 Pages.

Download: PDF

Submission history

[v1] 2017-03-11 02:01:57

Unique-IP document downloads: 11 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus