Artificial Intelligence


Human Readable Feature Generation for Natural Language Corpora

Authors: Tomasz Dryjanski

This paper proposes an alternative to the Paragraph Vector algorithm, generating fixed-length vectors of human-readable features for natural language corpora. It extends word2vec retaining its other advantages like speed and accuracy, hence its proposed name is doc2feat. Extracted features are presented as lists of words with their proximity to the particular feature, allowing interpretation and manual annotation. By parameter tuning focus can be made on grammatical aspects of the corpus language, making it useful for linguistic applications. The algorithm can run on variable-length pieces of texts, and provides insight into what features are relevant for text classification or sentiment analysis. The corpus does not have to, and in specific cases should not be, preprocessed with stemming or stop-words removal.

Comments: 4 Pages.

Download: PDF

Submission history

[v1] 2017-03-07 09:36:39

Unique-IP document downloads: 35 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus