Physics of Biology


Thermodynamics of Learning

Authors: George Rajna

While investigating how efficiently the brain can learn new information, physicists have found that, at the neuronal level, learning efficiency is ultimately limited by the laws of thermodynamics—the same principles that limit the efficiency of many other familiar processes. [18] Neural networks are commonly used today to analyze complex data – for instance to find clues to illnesses in genetic information. Ultimately, though, no one knows how these networks actually work exactly. [17] Hey Siri, how's my hair?" Your smartphone may soon be able to give you an honest answer, thanks to a new machine learning algorithm designed by U of T Engineering researchers Parham Aarabi and Wenzhi Guo. [16] Researchers at Lancaster University's Data Science Institute have developed a software system that can for the first time rapidly self-assemble into the most efficient form without needing humans to tell it what to do. [15] Physicists have shown that quantum effects have the potential to significantly improve a variety of interactive learning tasks in machine learning. [14] A Chinese team of physicists have trained a quantum computer to recognise handwritten characters, the first demonstration of " quantum artificial intelligence ". Physicists have long claimed that quantum computers have the potential to dramatically outperform the most powerful conventional processors. The secret sauce at work here is the strange quantum phenomenon of superposition, where a quantum object can exist in two states at the same time. [13] One of biology's biggest mysteries-how a sliced up flatworm can regenerate into new organisms-has been solved independently by a computer. The discovery marks the first time that a computer has come up with a new scientific theory without direct human help. [12] A team of researchers working at the University of California (and one from Stony Brook University) has for the first time created a neural-network chip that was built using just memristors. In their paper published in the journal Nature, the team describes how they built their chip and what capabilities it has. [11] A team of researchers used a promising new material to build more functional memristors, bringing us closer to brain-like computing. Both academic and industrial laboratories are working to develop computers that operate more like the human brain. Instead of operating like a conventional, digital system,

Comments: 30 Pages.

Download: PDF

Submission history

[v1] 2017-02-06 09:21:53

Unique-IP document downloads: 13 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus