Number Theory

   

Conjecture on 3-Carmichael Numbers of the Form (4h+1)(4j+1)(4k+1)

Authors: Marius Coman

In this paper I conjecture that for any 3-Carmichael number (absolute Fermat pseudoprime with three prime factors, see the sequence A087788 in OEIS) of the form (4*h + 1)*(4*j + 1)*(4*k + 1) is true that h, j and k must share a common factor (in fact, for seven from a randomly chosen set of ten consecutive, reasonably large, such numbers it is true that both j and k are multiples of h). The conjecture is probably true even for the larger set of 3-Poulet numbers (Fermat pseudoprimes to base 2 with three prime factors, see the sequence 215672 in OEIS).

Comments: 2 Pages.

Download: PDF

Submission history

[v1] 2017-01-24 00:00:25

Unique-IP document downloads: 11 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus