## MOD Natural Neutrosophic Subset Topological Spaces and Kakutani’s Theorem

**Authors:** W. B. Vasantha Kandasamy, K. Ilanthenral, Florentin Smarandache

In this book authors for the first time develop the notion of MOD natural neutrosophic subset special type of topological spaces using MOD natural neutrosophic dual numbers or MOD natural neutrosophic finite complex number or MOD natural neutrosophic-neutrosophic numbers and so on to build their respective MOD semigroups. Later they extend this concept to MOD interval subset semigroups and MOD interval neutrosophic subset semigroups. Using these MOD interval semigroups and MOD interval natural neutrosophic subset semigroups special type of subset topological spaces are built. Further using these MOD subsets we build MOD interval subset matrix semigroups and MOD interval subset matrix special type of matrix topological spaces. Likewise using MOD interval natural neutrosophic subsets matrices semigroups we can build MOD interval natural neutrosophic matrix subset special type of topological spaces. We also do build MOD subset coefficient polynomial special type of topological spaces. The final chapter mainly proposes several open conjectures about the validity of the Kakutani’s fixed point theorem for all MOD special type of subset topological spaces.

**Comments:** 278 Pages.

**Download:** **PDF**

### Submission history

[v1] 2017-01-17 00:26:31

**Unique-IP document downloads:** 99 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary.
In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution.
Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.*

*
*