## The Sequence of Repnumbers N with Property that the Number of Primes 30k+11 and 30k+13 up to N is Equal

**Authors:** Marius Coman

In my previous paper “Conjecture involving repunits, repdigits, repnumbers and also the primes of the form 30k + 11 and 30k + 13” I conjectured that there exist an infinity of repnumbers n (repunits, repdigits and numbers obtained concatenating not the unit or a digit but a number) for which the number of primes up to n of the form 30k + 11 is equal to the number of primes up to n of the form 30k + 13 and I found the first 18 terms of the sequence of n (I also found few larger terms, as 11111, 888888 and 11111111 up to which the number of primes from the two sets, equally for each, is 167, 8816, respectively 91687). In this paper I extend the search to first 40 terms of the sequence.

**Comments:** 1 Page.

**Download:** **PDF**

### Submission history

[v1] 2016-12-16 09:29:19

**Unique-IP document downloads:** 14 times

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.*

*
*