Number Theory

   

Conjecture Involving Repunits, Repdigits, Repnumbers and Also the Primes of the Form 30k+11 and 30k+13

Authors: Marius Coman

In my previous paper “Conjecture on semiprimes n = p*q related to the number of primes up to n” I was wondering if there exist a class of numbers n for which the number of primes up to n of the form 30k + 1, 30k + 7, 30k + 11, 30k + 13, 30k + 17, 30k + 19, 30k + 23 and 30k + 29 is equal in each of these eight sets. I didn’t yet find such a class, but I observed that around the repdigits, repunits and repnumbers (numbers obtained concatenating not the unit or a digit but a number) the distribution of primes in these eight sets tends to draw closer and I made a conjecture about it.

Comments: 1 Page.

Download: PDF

Submission history

[v1] 2016-12-15 16:20:52

Unique-IP document downloads: 20 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus