## Two Conjectures on the Number of Primes Obtained Concatenating to the Left with Numbers Lesser Than P a Prime P

**Authors:** Marius Coman

In this paper I conjecture that: (I) for any prime p of the form 6*k + 1 there are obtained at least n primes concatenating p to the left with the (p – 1) integers lesser than p, where n ≥ (p - 10)/3; (II) for any prime p of the form 6*k – 1, p ≥ 11, there are obtained at least n primes concatenating p to the left with the (p – 1) integers lesser than p, where n ≥ (p - 8)/3.

**Comments:** 3 Pages.

**Download:** **PDF**

### Submission history

[v1] 2016-12-15 06:24:20

**Unique-IP document downloads:** 9 times

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.*

*
*