Number Theory


Three Conjectures Regarding Poulet Numbers and Harshad Numbers

Authors: Marius Coman

In this paper I make the following three conjectures: (I) If P is both a Poulet number and a Harshad number, than the number P – 1 is also a Harshad number; (II) If P is a Poulet number divisible by 5 under the condition that the sum of the digits of P – 1 is not divisible by 5 than P – 1 is a Harshad number; (III) There exist an infinity of Harshad numbers of the form P – 1, where P is a Poulet number.

Comments: 2 Pages.

Download: PDF

Submission history

[v1] 2016-11-11 15:58:33

Unique-IP document downloads: 17 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus