Subnormal Distribution Derived from Evolving Networks with Variable Elements

Authors: Minyu Feng, Hong Qu, Zhang Yi, Jürgen Kurths

During the last decades, Power-law distributions played significant roles in analyzing the topology of scale-free (SF) networks. However, in the observation of degree distributions of practical networks and other unequal distributions such as wealth distribution, we uncover that, instead of monotonic decreasing, there exists a peak at the beginning of most real distributions, which cannot be accurately described by a Power-law. In this paper, in order to break the limitation of the Power-law distribution, we provide detailed derivations of a novel distribution called Subnormal distribution from evolving networks with variable elements and its concrete statistical properties. Additionally, imulations of fitting the subnormal distribution to the degree distribution of evolving networks, real social network, and personal wealth distribution are displayed to show the fitness of proposed distribution.

Comments: 11 pages

Download: PDF

Submission history

[v1] 2016-11-03 07:20:40

Unique-IP document downloads: 95 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus