Quantum Physics


Qubits Coherence and Control

Authors: George Rajna

If you're building a quantum computer with the intention of making calculations not even imaginable with today's conventional technology, you're in for an arduous effort. Case in point: You're delving into new problems and situations associated with the foundational work of novel and complicated systems as well as cutting-edge technology. [24] 'This would for example allow transferring information from superconducting quantum bits to the "flying qubits" in the visible light range and back', envision the creators of the theory for the device, Tero Heikkilä, Professor at the University of Jyväskylä, and Academy Research Fellow Francesco Massel. Therefore, the method has potential for data encryption based on quantum mechanics, i.e. quantum cryptography, as well as other applications. [23] Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer. [22] Australian engineers have created a new quantum bit which remains in a stable superposition for 10 times longer than previously achieved, dramatically expanding the time during which calculations could be performed in a future silicon quantum computer. [21] Harnessing solid-state quantum bits, or qubits, is a key step toward the mass production of electronic devices based on quantum information science and technology. However, realizing a robust qubit with a long lifetime is challenging, particularly in semiconductors comprising multiple types of atoms. [20] Researchers from Delft, the University of Wisconsin and Ames Laboratory, led by Prof. Lieven Vandersypen of TU Delft's QuTech discovered that the stability of qubits could be maintained 100 times more effectively in silicon than in gallium arsenide. [19] Researchers from MIT and MIT Lincoln Laboratory report an important step toward practical quantum computers, with a paper describing a prototype chip that can trap ions in an electric field and, with built-in optics, direct laser light toward each of them. [18] An ion trap with four segmented blade electrodes used to trap a linear chain of atomic ions for quantum information processing. Each ion is addressed optically for individual control and readout using the high optical access of the trap. [17]

Comments: 36 Pages.

Download: PDF

Submission history

[v1] 2016-11-01 07:51:17

Unique-IP document downloads: 11 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus