Mathematical Physics

   

Electromagnetic-Power-based Characteristic Mode Theory for Perfect Electric Conductors

Authors: Renzun Lian

In this paper, an ElectroMagnetic-Power-based Characteristic Mode Theory (CMT) for PEC systems (PEC-EMP-CMT) is built. The PEC-EMP-CMT is valid for the PEC systems which are surrounded by any electromagnetic environment, and it can construct the complex characteristic currents and non-radiative Characteristic Modes (CMs). In this paper, some traditional concepts, such as the system input impedance and modal input impedance etc., are redefined; the traditional characteristic quantity, Modal Significance (MS), is generalized; a series of new power-based CM sets are introduced. It is proven in this paper that various power-based CM sets of a certain objective PEC structure are independent of the external environment and excitation; the non-radiative space constituted by all non-radiative modes is identical to the interior resonance space constituted by all interior resonant modes of closed PEC structures, and the non-radiative CMs constitute a basis of the space. Based on above these, the normal Eigen-Mode Theory (EMT) for closed PEC structures is classified into the PEC-EMP-CMT framework. In addition, a variational formulation for the external scattering problem of PEC structures is provided in this paper, based on the conservation law of energy.

Comments: 17 Pages.

Download: PDF

Submission history

[v1] 2016-10-28 04:20:20

Unique-IP document downloads: 102 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus