Artificial Intelligence

   

Belief Reliability Analysis and Its Application

Authors: Haoyang Zheng, Likang Yin, Tian Bian, Yong Deng

In reliability analysis, Fault Tree Analysis based on evidential networks is an important research topic. However, the existing EN approaches still remain two issues: one is the final results are expressed with interval numbers, which has a relatively high uncertainty to make a final decision. The other is the combination rule is not used to fuse uncertain information. These issues will greatly decrease the efficiency of EN to handle uncertain information. To address these open issues, a new methodology, called Belief Reliability Analysis, is presented in this paper. The combination methods to deal with series system, parallel system, series-parallel system as well as parallel-series system are proposed for reliability evaluation. Numerical examples and the real application in servo-actuation system are used to show the efficiency of the proposed Belief Reliability Analysis methodology.

Comments: 24 Pages.

Download: PDF

Submission history

[v1] 2016-10-07 00:22:44

Unique-IP document downloads: 23 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus