Mathematical Physics

   

Mass Gap

Authors: Ricardo Gil

In quantum field theory, the mass gap is the difference in energy between the vacuum and the next lowest energy state. The energy of the vacuum is zero by definition, and assuming that all energy states can be thought of as particles in plane-waves, the mass gap is the mass of the lightest particle. The purpose of this paper is to suggest that the lowest state in a system is the entanglement which’s gravity for the Entanglement State is calculated by 2.99E12 x 1G / 9.8 m/s2 = 305102040846 G= 1/30510204086 G = 3.277592E-12 G X 1E-32m= 3.277 E-44 at 1/8.96 E20 Joules /Kg=1.11E-21 Joules/Kg energy state.

Comments: 1 Page.

Download: PDF

Submission history

[v1] 2016-10-03 07:39:34

Unique-IP document downloads: 20 times

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus