Mind Science

   

From Abstract Topology to Real Thermodynamic Brain Activity

Authors: Arturo Tozzi, James F Peters

Recent approaches to brain phase spaces reinforce the foremost role of symmetries and energy requirements in the assessment of nervous activity. Changes in thermodynamic parameters and dimensions occur in the brain during symmetry breakings and transitions from one functional state to another. Based on topological results and string-like trajectories into nervous energy landscapes, we provide a novel method for the evaluation of energetic features and constraints in different brain functional activities. We show how abstract approaches, namely the Borsuk-Ulam theorem and its variants, display real, energetic physical counterparts. When topology meets the physics of the brain, we arrive at a general model of neuronal activity, in terms of multidimensional manifolds and computational geometry, that has the potential to be operationalized.

Comments: 10 Pages.

Download: PDF

Submission history

[v1] 2016-09-07 03:30:51

Unique-IP document downloads: 41 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus