Physical, Thermal and Spectral Properties of Biofield Treated 1,2,3-Trimethoxybenzene

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak

Study background: 1,2,3-Trimethoxybenzene is an important compound used for the synthesis of chemicals and pharmaceutical agents. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of 1,2,3-trimethoxybenzene. Methods: The study was performed by dividing the sample into two groups (control and treated). The control group remained as untreated, while the treated group received Mr Trivedi’s biofield energy treatment. The control and treated 1,2,3-trimethoxybenzene samples were then characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, and ultra violetvisible spectroscopy (UV-Vis) analysis. Results: XRD studies revealed the significant increase in crystallite size of treated sample by 45.96% as compared to the control sample. DSC analysis showed a decrease in melting temperature of the treated sample (45.93ºC) with respect to control (46.58ºC). Additionally, the substantial change was evidenced in latent heat of fusion of treated sample by 64.18% as compared to the control. TGA analysis indicated a decrease in maximum thermal decomposition temperature (Tmax) of treated sample (151.92ºC) as compared to the control sample (154.43ºC). This indicated the decrease in thermal stability of the treated sample as compared to the control. FT-IR spectroscopic analysis showed an increase in the frequency of C-O bond in treated sample (1105→1174 cm-1) as compared to the control sample. However, UV analysis showed no changes in absorption peaks in treated sample as compared to the untreated sample. Conclusion: Overall, the result indicated that biofield energy treatment has altered the physical, thermal and spectral properties of the treated sample as compared to control. Hence, the treated sample could be used as an intermediate in the synthesis of organic compounds.

Comments: 8 Pages.

Download: PDF

Submission history

[v1] 2016-07-28 23:12:06

Unique-IP document downloads: 59 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus